Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
1.
Postgrad Med J ; 96(1137): 403-407, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-20245306

ABSTRACT

This article reviews the correlation between ACE2 and COVID-19 and the resulting acute respiratory distress syndrome (ARDS). ACE2 is a crucial component of the renin-angiotensin system (RAS). The classical ACE-angiotensin Ⅱ (Ang II)-angiotensin type 1 receptor (AT1R) axis and the ACE2-Ang(1-7)-Mas counter-regulatory axis play an essential role in RAS system. ACE2 antagonises the activation of the classical RAS ACE-Ang II-AT1R axis and protects against lung injury. Similar to severe acute respiratory syndrome-related coronavirus, 2019 novel coronavirus (2019-nCoV) also uses ACE2 for cell entry. ARDS is a clinical high-mortality disease which is probably due to the excessive activation of RAS caused by 2019-nCoV infection, and ACE2 has a protective effect on ARDS caused by COVID-19. Because of these protective effects of ACE2 on ARDS, the development of drugs enhancing ACE2 activity may become one of the most promising approaches for the treatment of COVID-19 in the near future. In the meantime, however, the use of RAS blockers such as ACE inhibitors and angiotensin II receptor blockers that inhibit the damaging (ACE-Ang II) arm of the RAS cascade in the lung may also be promising. Trial registration number: NCT04287686.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/physiopathology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/physiopathology , Receptors, Virus/metabolism , Respiratory Distress Syndrome/physiopathology , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme 2 , Betacoronavirus/drug effects , COVID-19 , Coronavirus Infections/drug therapy , Humans , Pandemics , Pneumonia, Viral/drug therapy , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/virology , SARS-CoV-2
4.
JAMA ; 329(14): 1183-1196, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2298507

ABSTRACT

IMPORTANCE: Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective: To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS: In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non-critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS: Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES: The primary outcome was organ support-free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS: On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support-free days among critically ill patients was 10 (-1 to 16) in the ACE inhibitor group (n = 231), 8 (-1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support-free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE: In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , COVID-19 Drug Treatment , COVID-19 , Renin-Angiotensin System , Female , Humans , Male , Middle Aged , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Bayes Theorem , COVID-19/therapy , Renin-Angiotensin System/drug effects , Hospitalization , COVID-19 Drug Treatment/methods , Critical Illness , Receptors, Chemokine/antagonists & inhibitors
5.
JAMA ; 329(14): 1170-1182, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2303367

ABSTRACT

Importance: Preclinical models suggest dysregulation of the renin-angiotensin system (RAS) caused by SARS-CoV-2 infection may increase the relative activity of angiotensin II compared with angiotensin (1-7) and may be an important contributor to COVID-19 pathophysiology. Objective: To evaluate the efficacy and safety of RAS modulation using 2 investigational RAS agents, TXA-127 (synthetic angiotensin [1-7]) and TRV-027 (an angiotensin II type 1 receptor-biased ligand), that are hypothesized to potentiate the action of angiotensin (1-7) and mitigate the action of the angiotensin II. Design, Setting, and Participants: Two randomized clinical trials including adults hospitalized with acute COVID-19 and new-onset hypoxemia were conducted at 35 sites in the US between July 22, 2021, and April 20, 2022; last follow-up visit: July 26, 2022. Interventions: A 0.5-mg/kg intravenous infusion of TXA-127 once daily for 5 days or placebo. A 12-mg/h continuous intravenous infusion of TRV-027 for 5 days or placebo. Main Outcomes and Measures: The primary outcome was oxygen-free days, an ordinal outcome that classifies a patient's status at day 28 based on mortality and duration of supplemental oxygen use; an adjusted odds ratio (OR) greater than 1.0 indicated superiority of the RAS agent vs placebo. A key secondary outcome was 28-day all-cause mortality. Safety outcomes included allergic reaction, new kidney replacement therapy, and hypotension. Results: Both trials met prespecified early stopping criteria for a low probability of efficacy. Of 343 patients in the TXA-127 trial (226 [65.9%] aged 31-64 years, 200 [58.3%] men, 225 [65.6%] White, and 274 [79.9%] not Hispanic), 170 received TXA-127 and 173 received placebo. Of 290 patients in the TRV-027 trial (199 [68.6%] aged 31-64 years, 168 [57.9%] men, 195 [67.2%] White, and 225 [77.6%] not Hispanic), 145 received TRV-027 and 145 received placebo. Compared with placebo, both TXA-127 (unadjusted mean difference, -2.3 [95% CrI, -4.8 to 0.2]; adjusted OR, 0.88 [95% CrI, 0.59 to 1.30]) and TRV-027 (unadjusted mean difference, -2.4 [95% CrI, -5.1 to 0.3]; adjusted OR, 0.74 [95% CrI, 0.48 to 1.13]) resulted in no difference in oxygen-free days. In the TXA-127 trial, 28-day all-cause mortality occurred in 22 of 163 patients (13.5%) in the TXA-127 group vs 22 of 166 patients (13.3%) in the placebo group (adjusted OR, 0.83 [95% CrI, 0.41 to 1.66]). In the TRV-027 trial, 28-day all-cause mortality occurred in 29 of 141 patients (20.6%) in the TRV-027 group vs 18 of 140 patients (12.9%) in the placebo group (adjusted OR, 1.52 [95% CrI, 0.75 to 3.08]). The frequency of the safety outcomes was similar with either TXA-127 or TRV-027 vs placebo. Conclusions and Relevance: In adults with severe COVID-19, RAS modulation (TXA-127 or TRV-027) did not improve oxygen-free days vs placebo. These results do not support the hypotheses that pharmacological interventions that selectively block the angiotensin II type 1 receptor or increase angiotensin (1-7) improve outcomes for patients with severe COVID-19. Trial Registration: ClinicalTrials.gov Identifier: NCT04924660.


Subject(s)
COVID-19 , Receptor, Angiotensin, Type 1 , Renin-Angiotensin System , Vasodilator Agents , Adult , Female , Humans , Male , Middle Aged , Angiotensin II/metabolism , Angiotensins/administration & dosage , Angiotensins/therapeutic use , COVID-19/complications , COVID-19/mortality , COVID-19/physiopathology , COVID-19/therapy , Hypoxia/drug therapy , Hypoxia/etiology , Hypoxia/mortality , Infusions, Intravenous , Ligands , Oligopeptides/administration & dosage , Oligopeptides/therapeutic use , Randomized Controlled Trials as Topic , Receptor, Angiotensin, Type 1/administration & dosage , Receptor, Angiotensin, Type 1/therapeutic use , Renin-Angiotensin System/drug effects , SARS-CoV-2 , Vasodilator Agents/administration & dosage , Vasodilator Agents/therapeutic use
7.
Acta Biochim Biophys Sin (Shanghai) ; 54(1): 1-11, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-2287239

ABSTRACT

Since the first reported case in December of 2019, the coronavirus disease 2019 (COVID-19) has became an international public health emergency. So far, there are more than 228,206,384 confirmed cases including 4,687,066 deaths. Kidney with high expression of angiotensin-converting enzyme 2 (ACE2) is one of the extrapulmonary target organs affected in patients with COVID-19. Acute kidney injury (AKI) is one of the independent risk factors for the death of COVID-19 patients. The imbalance between ACE2-Ang(1-7)-MasR and ACE-Ang II-AT1R axis in the kidney may contribute to COVID-19-associated AKI. Although series of research have shown the inconsistent effects of multiple common RAS inhibitors on ACE2 expression and enzyme activity, most of the retrospective cohort studies indicated the safety and protective effects of ACEI/ARB in COVID-19 patients. This review article highlights the current knowledge on the possible involvement of intrarenal RAS in COVID-19-associated AKI with a primary focus on the opposing effects of ACE2-Ang(1-7)-MasR and ACE-Ang II-AT1R signaling in the kidney. Human recombinant soluble ACE2 or ACE2 variants with preserved ACE2-enzymatic activity may be the best options to improve COVID-19-associated AKI.


Subject(s)
Acute Kidney Injury/etiology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , COVID-19/complications , Kidney/physiology , Renin-Angiotensin System/physiology , SARS-CoV-2/pathogenicity , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , COVID-19/pathology , COVID-19/virology , Humans , Kidney/drug effects , Renin-Angiotensin System/drug effects , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , COVID-19 Drug Treatment
9.
Ann Intern Med ; 173(6): JC35, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-2110753

ABSTRACT

SOURCE CITATION: Reynolds HR, Adhikari S, Pulgarin C, et al. Renin-angiotensin-aldosterone system inhibitors and risk of Covid-19. N Engl J Med. 2020;382:2441-8. 32356628.


Subject(s)
Coronavirus Infections , Pandemics , Pneumonia, Viral , Angiotensin-Converting Enzyme Inhibitors , Antihypertensive Agents , Betacoronavirus , COVID-19 , Humans , Renin-Angiotensin System/drug effects , SARS-CoV-2
10.
Physiol Rep ; 10(22): e15512, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2115675

ABSTRACT

Previous studies suggested that ongoing treatment with renin-angiotensin-aldosterone system (RAAS) inhibitor drugs may alter the course of SARS-CoV-2 infection and promote the development of more severe forms of the disease. The authors conducted a comparative, observational study to retrospectively analyze data collected from 394 patients admitted to ICU due to SARS-CoV-2 pneumonia. The primary aim of the study was to establish an association between the use of RAAS inhibitor drugs and mortality in the ICU. The secondary aims of the study were to establish an association between the use of RAAS inhibitor drugs and clinical severity at ICU admission, the need for tracheal intubation, total days of mechanical ventilation, and the ICU length of stay. The authors found no statistically significant difference in ICU mortality between patients on RAAS inhibitor drugs at admission and those who were not (31.3% versus 26.2% mortality, p-value 0.3). However, the group of patients taking RAAS inhibitor drugs appeared to be more critical at ICU admission, and this difference became statistically significant in the subgroup of non-hypertensive patients. ICU mortality in the subgroup of non-hypertensive patients treated with RAAS inhibitor drugs also tended to be higher. Overexpression of the angiotensin-converting enzyme 2 (ACE2) in human cells, induced by RAAS inhibitor drugs, promotes viral entry-replication of SARS-CoV-2 and alters the basal balance of the RAAS, which may explain the findings observed in the present study. These phenomena may be amplified in non-hypertensive patients treated with RAAS inhibitor therapy.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , COVID-19 Drug Treatment , COVID-19 , Renin-Angiotensin System , Humans , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Antihypertensive Agents/therapeutic use , COVID-19/mortality , Prognosis , Renin-Angiotensin System/drug effects , Retrospective Studies , SARS-CoV-2 , Intensive Care Units , Hospitalization
11.
Kidney Blood Press Res ; 47(9): 565-575, 2022.
Article in English | MEDLINE | ID: covidwho-2064352

ABSTRACT

INTRODUCTION: The angiotensin-converting enzyme 2 (ACE2) as well as the transmembrane protease serine type 2 (TMPRSS2) have been found to play roles in cell entry for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19). SARS-CoV-2 infection risk and severity of COVID-19 might be indicated by the expression of ACE2 and TMPRSS2 in the lung. METHODS: A high-salt diet rat model and renin-angiotensin-aldosterone system (RAAS) blockade were used to test whether these factors affect ACE2 and TMPRSS2 expression in the lung. A normal (0.3% NaCl), a medium (2% NaCl), or a high (8% NaCl) salt diet was fed to rats for 12 weeks, along with enalapril or telmisartan, before examining the lung for histopathological alteration. Using immunofluorescence and qRT-PCR, the localization as well as mRNA expression of ACE2 and TMPRSS2 were investigated. RESULTS: The findings provide evidence that both TMPRSS2 and ACE2 are highly expressed in bronchial epithelial cells as well as ACE2 was also expressed in alveolar type 2 cells. High-salt diet exposure in rats leads to elevated ACE2 expression on protein level. Treatment with RAAS blockers had no effect on lung tissue expression of ACE2 and TMPRSS2. CONCLUSIONS: These findings offer biological support regarding the safety of these drugs that are often prescribed to COVID-19 patients with cardiovascular comorbidity. High salt intake, on the other hand, might adversely affect COVID-19 outcome. Our preclinical data should stimulate clinical studies addressing this point of concern.


Subject(s)
COVID-19 , Renin-Angiotensin System , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Enalapril/pharmacology , Lung , RNA, Messenger/metabolism , Rats , Renin-Angiotensin System/drug effects , Serine Endopeptidases , Sodium Chloride, Dietary/adverse effects , Telmisartan/pharmacology
14.
Crit Care Med ; 50(9): 1306-1317, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-1860941

ABSTRACT

OBJECTIVES: To determine whether angiotensin receptor blockers (ARBs) or angiotensin-converting enzyme (ACE) inhibitors are associated with improved outcomes in hospitalized patients with COVID-19 according to sex and to report sex-related differences in renin-angiotensin system (RAS) components. DESIGN: Prospective observational cohort study comparing the effects of ARB or ACE inhibitors versus no ARBs or ACE inhibitors in males versus females. Severe acute respiratory syndrome coronavirus 2 downregulates ACE-2, potentially increasing angiotensin II (a pro-inflammatory vasoconstrictor). Sex-based differences in RAS dysregulation may explain sex-based differences in responses to ARBs because the ACE2 gene is on the X chromosome. We recorded baseline characteristics, comorbidities, prehospital ARBs or ACE inhibitor treatment, use of organ support and mortality, and measured RAS components at admission and days 2, 4, 7, and 14 in a subgroup ( n = 46), recorded d -dimer ( n = 967), comparing males with females. SETTING: ARBs CORONA I is a multicenter Canadian observational cohort of patients hospitalized with acute COVID-19. This analysis includes patients admitted to 10 large urban hospitals across the four most populated provinces. PATIENTS: One-thousand six-hundred eighty-six patients with polymerase chain reaction-confirmed COVID-19 (February 2020 to March 2021) for acute COVID-19 illness were included. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Males on ARBs before admission had decreased use of ventilation (adjusted odds ratio [aOR] = 0.52; p = 0.007) and vasopressors (aOR = 0.55; p = 0.011) compared with males not on ARBs or ACE inhibitors. No significant effects were observed in females for these outcomes. The test for interaction was significant for use of ventilation ( p = 0.006) and vasopressors ( p = 0.044) indicating significantly different responses to ARBs according to sex. Males had significantly higher plasma ACE-1 at baseline and angiotensin II at day 7 and 14 than females. CONCLUSIONS: ARBs use was associated with less ventilation and vasopressors in males but not females. Sex-based differences in RAS dysregulation may contribute to sex-based differences in outcomes and responses to ARBs in COVID-19.


Subject(s)
COVID-19 Drug Treatment , Hypertension , Angiotensin II/pharmacology , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Canada , Female , Humans , Male , Prospective Studies , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Sex Characteristics
16.
Signal Transduct Target Ther ; 7(1): 57, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1702971

ABSTRACT

The coronavirus disease 2019 (COVID-19) is a highly transmissible disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that poses a major threat to global public health. Although COVID-19 primarily affects the respiratory system, causing severe pneumonia and acute respiratory distress syndrome in severe cases, it can also result in multiple extrapulmonary complications. The pathogenesis of extrapulmonary damage in patients with COVID-19 is probably multifactorial, involving both the direct effects of SARS-CoV-2 and the indirect mechanisms associated with the host inflammatory response. Recognition of features and pathogenesis of extrapulmonary complications has clinical implications for identifying disease progression and designing therapeutic strategies. This review provides an overview of the extrapulmonary complications of COVID-19 from immunological and pathophysiologic perspectives and focuses on the pathogenesis and potential therapeutic targets for the management of COVID-19.


Subject(s)
Acute Kidney Injury/complications , COVID-19/complications , Cytokine Release Syndrome/complications , Disseminated Intravascular Coagulation/complications , Lymphopenia/complications , Myocarditis/complications , Pulmonary Embolism/complications , Acute Kidney Injury/drug therapy , Acute Kidney Injury/immunology , Acute Kidney Injury/virology , Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/virology , Clinical Trials as Topic , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Disseminated Intravascular Coagulation/drug therapy , Disseminated Intravascular Coagulation/immunology , Disseminated Intravascular Coagulation/virology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/virology , Humans , Immunity, Innate/drug effects , Immunologic Factors/therapeutic use , Lymphopenia/drug therapy , Lymphopenia/immunology , Lymphopenia/virology , Myocarditis/drug therapy , Myocarditis/immunology , Myocarditis/virology , Pulmonary Embolism/drug therapy , Pulmonary Embolism/immunology , Pulmonary Embolism/virology , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , COVID-19 Drug Treatment
18.
Life Sci ; 293: 120324, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1616648

ABSTRACT

AIMS: Angiotensin-converting enzyme (ACE) 2 is the receptor for severe acute respiratory syndrome coronavirus 2 which causes coronavirus disease 2019 (COVID-19). Viral cellular entry requires ACE2 and transmembrane protease serine 2 (TMPRSS2). ACE inhibitors (ACEIs) or angiotensin (Ang) receptor blockers (ARBs) influence ACE2 in animals, though evidence in human lungs is lacking. We investigated ACE2 and TMPRSS2 in type II pneumocytes, the key cells that maintain lung homeostasis, in lung parenchymal of ACEI/ARB-treated subjects compared to untreated control subjects. MAIN METHODS: Ang II and Ang-(1-7) levels and ACE2 and TMPRSS2 protein expression were measured by radioimmunoassay and immunohistochemistry, respectively. KEY FINDINGS: We found that the ratio Ang-(1-7)/Ang II, a surrogate marker of ACE2 activity, as well as the amount of ACE2-expressing type II pneumocytes were not different between ACEI/ARB-treated and untreated subjects. ACE2 protein content correlated positively with smoking habit and age. The percentage of TMPRSS2-expressing type II pneumocytes was higher in males than females and in subjects under 60 years of age but it was not different between ACEI/ARB-treated and untreated subjects. However, there was a positive association of TMPRSS2 protein content with age and smoking in ACEI/ARB-treated subjects, with high TMPRSS2 protein levels most evident in ACEI/ARB-treated older adults and smokers. SIGNIFICANCE: ACEI/ARB treatment influences human lung TMPRSS2 but not ACE2 protein content and this effect is dependent on age and smoking habit. This finding may help explain the increased susceptibility to COVID-19 seen in smokers and older patients with treated cardiovascular-related pathologies.


Subject(s)
Alveolar Epithelial Cells/metabolism , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Renin-Angiotensin System/physiology , Serine Endopeptidases/metabolism , Adult , Age Factors , Aged , Alveolar Epithelial Cells/chemistry , Alveolar Epithelial Cells/drug effects , Angiotensin I/metabolism , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2/analysis , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Female , Humans , Lung/chemistry , Lung/drug effects , Lung/metabolism , Male , Middle Aged , Peptide Fragments/metabolism , Renin-Angiotensin System/drug effects , Retrospective Studies , Serine Endopeptidases/analysis , Smoking/metabolism , Smoking/pathology
19.
J Investig Med ; 70(3): 786-791, 2022 03.
Article in English | MEDLINE | ID: covidwho-1605964

ABSTRACT

Hypertension is found frequently in patients with COVID-19 and is often treated with ACE inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). SARS-CoV-2, the pathogen of COVID-19, binds to the receptors of ACE2 to enter the alveolar cells, raising questions on whether these drugs are salutary or harmful with respect to any propensity for COVID-19 or to disease prognosis. We investigated the impact of ACEI/ARB and the clinical prognosis of patients with hypertension with COVID-19. In this study, 250 patients with hypertension (<45 years old) with COVID-19 were recruited. None of these patients had any chronic disease except for hypertension. The study population was grouped according to antihypertensive medication: ACEI/ARB user and non-ACEI/ARB user. Patients were followed for clinical prognosis and biochemical and radiological findings during their hospital stay. Adverse cardiovascular event (myocardial infarction, all-cause death, stroke), transfer to the intensive care unit, severity of symptoms during the treatment course, length of hospital stay and effort capacity in the treadmill stress test were recorded. During hospital stay, there was no significant difference in terms of length of hospital stay, medication for COVID-19, left ventricular ejection fraction on echocardiography and metabolic equivalents in the treadmill stress test between patients treated with and without ACEI/ARB. During treatment of COVID-19, there was no significant difference in clinical adverse event, effort capacity and clinical course between patients with and without ACEI/ARB. It appears that patients with COVID-19 may continue to use ACEI/ARB or that ACEI/ARB may be added safely to their antihypertensive treatment.


Subject(s)
Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Antihypertensive Agents , COVID-19 Drug Treatment , COVID-19 , Hypertension , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Antihypertensive Agents/therapeutic use , COVID-19/complications , Humans , Hypertension/complications , Hypertension/drug therapy , Middle Aged , Renin-Angiotensin System/drug effects , Retrospective Studies , SARS-CoV-2 , Stroke Volume , Ventricular Function, Left
20.
Sci Rep ; 11(1): 24397, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1585779

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is an important factor in coronavirus disease (COVID-19) interactions. Losartan (LOS) belongs to the angiotensin receptor blocker (ARB) family. Additionally, the protective role of ACE2 restored by LOS has been suggested and clinically examined in the treatment of COVID-19 patients. Furthermore, clinical trials with LOS have been conducted. However, the mechanism through which LOS enhances ACE2 expression remains unclear. In addition, the response of ACE2 to LOS differs among patients. Our LOS-treated patient data revealed a correlated mechanism of ACE2 with components of the renin-angiotensinogen system. We observed a significant positive regulation of MAS1 and ACE2 expression. In the context of LOS treatment of COVID-19, ACE2 expression could depend on LOS regulated MAS1. Thus, MAS1 expression could predict the COVID-19 treatment response of LOS.


Subject(s)
Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Losartan/pharmacology , Renin-Angiotensin System/drug effects , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme 2/genetics , COVID-19/pathology , COVID-19/virology , Databases, Factual , Humans , Losartan/therapeutic use , Proto-Oncogene Mas/genetics , Proto-Oncogene Mas/metabolism , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , SARS-CoV-2/isolation & purification , Up-Regulation/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL